
 BME280 Humidity + Barometric Pressure + Temperature Sensor
Breakout

2
3
6
6

6
7

8
8
9

10

12
12
12
13
14
15
17
19
21
21
21

22
22
22
22
22

Guide Contents

Guide Contents
Overview
Pinouts

Power Pins:

SPI Logic pins:
I2C Logic pins:

Assembly
Prepare the header strip:
Add the breakout board:
And Solder!

Arduino Test
I2C Wiring
SPI Wiring
Install Adafruit_BME280 library
Load Demo
Library Reference
CircuitPython Test
Usage
F.A.Q.

How come the altitude calculation is wrong? Is my sensor broken?
If I have long delays between reads, the first data read seems wrong?

Downloads
Documents
Alternative Driver (Python)
Schematic
Dimensions

Page 2 of 23

Overview

Bosch has stepped up their game with their new BME280 sensor, an environmental sensor with temperature,
barometric pressure and humidity! This sensor is great for all sorts of weather/environmental sensing and can even be
used in both I2C and SPI!

This precision sensor from Bosch is the best low-cost sensing solution for measuring humidity with ±3% accuracy,
barometric pressure with ±1 hPa absolute accuraccy, and temperature with ±1.0°C accuracy. Because pressure changes
with altitude, and the pressure measurements are so good, you can also use it as an altimeter with ±1 meter accuracy!

Page 3 of 23

The BME280 is the next-generation of sensors from Bosch, and is the upgrade to the BMP085/BMP180/BMP183 - with
a low altitude noise of 0.25m and the same fast conversion time. It has the same specifications, but can use either I2C
or SPI. For simple easy wiring, go with I2C. If you want to connect a bunch of sensors without worrying about I2C
address collisions, go with SPI.

Page 4 of 23

Nice sensor right? So we made it easy for you to get right into your next project. The surface-mount sensor is soldered
onto a PCB and comes with a 3.3V regulator and level shifting so you can use it with a 3V or 5V logic microcontroller
without worry. We even wrote up a nice tutorial with wiring diagrams, schematics, libraries and examples to get you
running in 10 minutes!

Page 5 of 23

Pinouts

Power Pins:

Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have included a voltage regulator on board that
will take 3-5VDC and safely convert it down. To power the board, give it the same power as the logic level of
your microcontroller - e.g. for a 5V micro like Arduino, use 5V
3Vo - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like
GND - common ground for power and logic

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic level safe. Use whatever logic
level is on Vin!

SCK - This is the SPI Clock pin, its an input to the chip
SDO - this is the Serial Data Out / Master In Slave Out pin, for data sent from the BMP183 to your processor
SDI - this is the Serial Data In / Master Out Slave In pin, for data sent from your processor to the BME280
CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an input to the chip

If you want to connect multiple BME280's to one microcontroller, have them share the SDI, SDO and SCK pins. Then

Page 6 of 23

assign each one a unique CS pin.

I2C Logic pins:

SCK - this is also the I2C clock pin, connect to your microcontrollers I2C clock line.
SDI - this is also the I2C data pin, connect to your microcontrollers I2C data line.

Leave the other pins disconnected

Page 7 of 23

Assembly

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

Page 8 of 23

https://learn.adafruit.com/assets/26682

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

Page 9 of 23

https://learn.adafruit.com/assets/26683

And Solder!
Be sure to solder all pins for reliable electrical contact.

You're done! Check your solder joints visually and

continue onto the next steps

Page 10 of 23

https://learn.adafruit.com/assets/26684
https://learn.adafruit.com/assets/26685
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/assets/26686

Arduino Test
You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For another kind of microcontroller,
as long as you have 4 available pins it is possible to 'bit-bang SPI' or you can use two I2C pins, but usually those pins
are fixed in hardware. Just check out the library, then port the code.

I2C Wiring

Use this wiring if you want to connect via I2C interface

Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the microcontroller logic is based off of.
For most Arduinos, that is 5V
Connect GND to common power/data ground
Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328 based Arduino, this is also
known as A5, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3
Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328 based Arduino, this is also
known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2

By default, the i2c address is 0x77. If you add a jumper from SDO to GND, the address will change to 0x76.

SPI Wiring

Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make wiring identical on all Arduinos,
we'll begin with 'software' SPI. The following pins should be used:

Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that the microcontroller logic is based
off of. For most Arduinos, that is 5V
Connect GND to common power/data ground
Connect the SCK pin to Digital #13 but any pin can be used later

Page 11 of 23

Connect the SDO pin to Digital #12 but any pin can be used later
Connect the SDI pin to Digital #11 but any pin can be used later
Connect the CS pin Digital #10 but any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if you desire, or change the pins to
other

Install Adafruit_BME280 library

To begin reading sensor data, you will need to It is available from the Arduino library manager so we recommend
using that.

From the IDE open up the library manager...

And type in adafruit bme280 to locate the library. Click Install

Page 12 of 23

https://github.com/adafruit/Adafruit_BME280_Library

We also have a great tutorial on Arduino library installation at:

Load Demo

Open up File->Examples->Adafruit_BME280->bmp280test and upload to your Arduino wired up to the sensor

Depending on whether you are using I2C or SPI, change the pin names and comment or uncomment the following
lines.

Page 13 of 23

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Once uploaded to your Arduino, open up the serial console at 9600 baud speed to see data being printed out

Temperature is calculated in degrees C, you can convert this to F by using the classic F = C * 9/5 + 32 equation.

Pressure is returned in the SI units of Pascals. 100 Pascals = 1 hPa = 1 millibar. Often times barometric pressure is
reported in millibar or inches-mercury. For future reference 1 pascal =0.000295333727 inches of mercury, or 1 inch Hg
= 3386.39 Pascal. So if you take the pascal value of say 100734 and divide by 3386.39 you'll get 29.72 inches-Hg.

You can also calculate Altitude. However, you can only really do a good accurate job of calculating altitude if you
know the hPa pressure at sea level for your location and day! The sensor is quite precise but if you do not have the
data updated for the current day then it can be difficult to get more accurate than 10 meters.

Library Reference

You can start out by creating a BME280 object with either software SPI (where all four pins can be any I/O) using

Or you can use hardware SPI. With hardware SPI you must use the hardware SPI pins for your Arduino - and each
arduino type has different pins! Check the SPI reference to see what pins to use.
In this case, you can use any CS pin, but the other three pins are fixed

#define BME_SCK 13
#define BME_MISO 12
#define BME_MOSI 11
#define BME_CS 10

Adafruit_BME280 bme; // I2C
//Adafruit_BME280 bme(BME_CS); // hardware SPI
//Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);

Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);

Page 14 of 23

http://arduino.cc/en/Reference/SPI

or I2C using the default I2C bus, no pins are assigned

Once started, you can initialize the sensor with

begin() will return True if the sensor was found, and False if not. If you get a False value back, check your wiring!

Reading humidity, temperature and pressure is easy, just call:

Temperature is always a floating point, in Centigrade. Pressure is a 32 bit integer with the pressure in Pascals. You
may need to convert to a different value to match it with your weather report. Humidity is in % Relative Humidity

It's also possible to turn the BME280 into an altimeter. If you know the pressure at sea level, the library can calculate
the current barometric pressure into altitude

However, you can only really do a good accurate job of calculating altitude if you know the hPa pressure at sea level
for your location and day! The sensor is quite precise but if you do not have the data updated for the current day then
it can be difficult to get more accurate than 10 meters.

Pass in the current sea level pressure in hPa - so the value will be somewhere around ~1000. You can also test with
the generic 1013.25 value.

Adafruit_BME280 bme(BME_CS); // hardware SPI

Adafruit_BME280 bme; // I2C

 if (!bme.begin()) {
 Serial.println("Could not find a valid BME280 sensor, check wiring!");
 while (1);
 }

bme.readTemperature()
bme.readPressure()
bme.readHumidity()

bmp.readAltitude(seaLevelPressure)

Page 15 of 23

CircuitPython Test
It's easy to use the BME280 sensor with CircuitPython and the BME280 module. This module allows you to easily
write Python code that reads the humidity, temperature, pressure, and more from the sensor.

First wire up a BME280 to your board exactly as shown on the previous pages for Arduino. You can use either I2C or
SPI wiring, although it's recommended to use I2C for simplicity. Here's an example of wiring a Feather M0 to the
sensor with I2C:

Board 3V to sensor VIN
Board GND to sensor GND
Board SCL to sensor SCK
Board SDA to sensor SDI

And an example of a Feather M0 wired with hardware SPI:

Page 16 of 23

https://github.com/adafruit/Adafruit_CircuitPython_BME280

Board 3V to sensor VIN
Board GND to sensor GND
Board SCK to sensor SCK
Board MOSI to sensor SDI
Board MISO to sensor SDO
Board D5 to sensor CS (or use any other free digital I/O pin)

Next you'll need to install the BME280 library on your CircuitPython board. Remember this module is for Adafruit
CircuitPython firmware and not MicroPython.org firmware!

First make sure you are running the latest version for your board. Next you'll need to install the necessary libraries to

use the hardware--carefully follow the steps to find and install these
libraries from library bundle. For example the Circuit Playground Express guide has a great page on how to install the
library bundle for both express and non-express boards.

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/Metro M0 basic you'll need to
manually install the necessary libraries from the bundle:

adafruit_bme280.mpy
adafruit_bus_device

You can also download the adafruit_bme280.mpy from its releases page on Github.

Before continuing make sure your board's lib folder or root filesystem has the adafruit_bme280.mpy, and
adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL so you are at the CircuitPython >>> prompt.

Page 17 of 23

https://github.com/adafruit/Adafruit_CircuitPython_BME280
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///adafruit-circuit-playground-express/installing-libraries
https://github.com/adafruit/Adafruit_CircuitPython_BME280/releases
file:///micropython-basics-how-to-load-micropython-on-a-board/serial-terminal

Usage

To demonstrate the usage of the sensor we'll initialize it and read the temperature, humidity, and more from the
board's Python REPL.

If you're using an I2C connection run the following code to import the necessary modules and initialize the I2C
connection with the sensor:

Remember if you're using a board that doesn't support hardware I2C (like the ESP8266) you need to use thebitbangio
module instead:

Or if you're using a SPI connection run this code instead to setup the SPI connection and sensor:

Now you're ready to read values from the sensor using any of these properties:

temperature - The sensor temperature in degrees Celsius.
humidity - The percent humidity as a value from 0 to 100%.
pressure - The pressure in hPa.
altitude - The altitude in meters.

For example to print temperature, humidity, and pressure:

import board
import busio
import adafruit_bme280 i2c = busio.I2C(board.SCL,
board.SDA) bme280 =
adafruit_bme280.BME280_I2C(i2c)

import board
import bitbangio
import adafruit_bme280 i2c =
bitbangio.I2C(board.SCL, board.SDA) bme280 =
adafruit_bme280.BME280_I2C(i2c)

import board
import busio
import digitalio
import adafruit_bme280 spi = busio.SPI(board.SCK,
MOSI=board.MOSI, MISO=board.MISO) cs =
digitalio.DigitalInOut(board.D5) bme280 =
adafruit_bme280.BME280_SPI(spi, cs)

print("\nTemperature: %0.1f C" % bme280.temperature)
print("Humidity: %0.1f %%" % bme280.humidity)
print("Pressure: %0.1f hPa" % bme280.pressure)

Page 18 of 23

For altitude you'll want to set the pressure at sea level for your location to get the most accurate measure (remember
these sensors can only infer altitude based on pressure and need a set calibration point). Look at your local weather
report for a pressure at sea level reading and set the sea_level_pressure property:

Then read the altitude property for a more accurate altitude reading (but remember this altitude will fluctuate based on
atmospheric pressure changes!):

That's all there is to using the BME280 sensor with CircuitPython!

bme280.sea_level_pressure = 1013.4

print("Altitude = %0.2f meters" % bme280.altitude)

Page 19 of 23

F.A.Q.
How come the altitude calculation is wrong? Is my sensor broken?

No, your sensor is likely just fine. The altitude calculation depends on knowing the barometric pressure at sea level

If you do not set the correct sea level pressure for your location FOR THE CURRENT DAY it will not be able to
calculate the altitude accurately

Barometric pressure at sea level changes daily based on the weather!

If I have long delays between reads, the first data read seems wrong?

The BMx280 'saves' the last reading in memory for you to query. Just read twice in a row and toss out the first
reading!

Page 20 of 23

Downloads
Documents

Datasheet for the BME280 sensor used in this breakout
Arduino BME280 Driver
Fritzing object in the Adafruit Fritzing Library
EagleCAD PCB files on GitHub

Alternative Driver (Python)

If you are using this breakout with a Raspberry Pi or Pi2, you can also look at the BME280 driver.

This alternative driver uses I2C to communicate with the BME280, so connect SCL on the Pi to SCK on the BME, and
SDA to SDI, along with power (3.3V to VIN) and GND.

Schematic

Click to enlarge

Dimensions

In inches

Page 21 of 23

http://www.adafruit.com/datasheets/BST-BME280_DS001-10.pdf
https://github.com/adafruit/Adafruit_BME280_Library
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-BME280-Breakout-PCB
https://github.com/adafruit/Adafruit_Python_BME280

Page 22 of 23

	Guide Contents
	Overview
	Pinouts
	Power Pins:

	SPI Logic pins:
	I2C Logic pins:

	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Arduino Test
	I2C Wiring
	SPI Wiring
	Install Adafruit_BME280 library
	Load Demo
	Library Reference
	CircuitPython Test
	Usage
	F.A.Q.
	How come the altitude calculation is wrong? Is my sensor broken?
	If I have long delays between reads, the first data read seems wrong?

	Downloads
	Documents
	Alternative Driver (Python)
	Schematic
	Dimensions

